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Acronyms and Abbreviations 

CA Certificate Authority 

ECC Elliptical Cryptographic Curve 

GE General Electric 

HVAC heating, ventilation, and air-conditioning 

ML Machine Learning 

MQTT Message Queuing Telemetry Transport 

PNNL Pacific Northwest National Laboratory 

RMQ RabbitMQ 

RPC Remote Procedure Call 

VIP VOLTTRON Interconnect Protocol 

ZAP ZeroMQ Authentication Protocol 

ZMQ ZeroMQ 

JSON JavaScript Object Notation 
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 Introduction 

The VOLTTRON platform developed by Pacific Northwest National Laboratory (PNNL) and 
funded by the U.S. Department of Energy’s Building Technologies Office incorporates two 
different message bus technologies, each with its own strengths and use cases. The message 
bus is a key platform component responsible for moving data from one endpoint to another. It is 
also essential for meeting the security and interoperability goals of the platform with implications 
on ease of deployment, scalability, and integration. This document describes ZeroMQ (ZMQ) 
and RabbitMQ (RMQ) as used in VOLTTRON and discusses the most appropriate message 
bus choice for a specific VOLTTRON deployment use case.  

VOLTTRON was initially developed with ZMQ as the message bus. ZMQ’s messaging library is 
lightweight and extensible allowing for development of scalable distributed applications. 
However, many custom-built features had to be added on top of the core ZMQ library to meet 
platform requirements. As VOLTTRON became more mature and the number of use cases 
increased, the VOLTTRON team continuously attempted to maintain and extend features to 
these custom-built features to keep up with community needs. Based on community feedback 
and to reduce maintenance cost, it was decided to refactor VOLTTRON’s message bus layer, to 
use a more industry-accepted messaging library that provides many of the needed features. 
RMQ is one such messaging library that has seen major investments by commercial 
companies. Rabbit Technologies, now part of Pivotal Technologies (VMWARE spin-off) saw a 
$105 million investment by General Electric in 2013. It is used by Instagram, Indeed.com, 
Google Cloud Platform, Tesla, etc. Huge industry backing and the ability to benefit from 
community-driven message bus improvements, led PNNL to include RMQ as the next message 
bus for VOLTTRON. The goals of this message bus extension are as follows:  

• Maintain essential features of current message bus and minimize transition cost. 

• Leverage an existing and growing community dedicated to the further development of RMQ. 

• Move services provided currently by VOLTTRON agents to services natively provided by 
RMQ. 

• Decrease VOLTTRON development time spent on supporting the message bus, which is 
now a commodity technology. 

• Address community concerns about ZMQ. 

To allow community members to select the best option for their needs, this document provides 
recommendations about which message bus is better suited for various use cases and 
deployment scenarios. A summary of recommendations can be found in section 2.0. Sections 
3.0 and 4.0 provide a short description of ZMQ-based VOLTTRON and RMQ-based 
VOLTTRON, and Section 5.0 describes the differences between the two. Section 0 describes 
performance benchmarking performed on the two message bus technologies on Raspberry Pi 
and the results collected from various test scenarios. Section 7.0 describes various deployment 
use cases and when to use each message bus. Section 8.0 describes how RMQ-based 
VOLTTRON can be used to integrate with various third-party tools to make heterogeneous 
systems work cohesively. 
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 Deployment Recommendations Summary 

This section provides a short summary of the analysis and consideration of common use cases 
with recommendations for when to use each message bus. More in-depth analysis and 
discussion follows in the rest of the document.  

ZMQ-based VOLTTRON is easy to install because it involves very few installation steps. Non-
software engineers can quickly bootstrap the environment with minimal steps and start running 
the platform. It is lightweight, has well-defined security features, and a low memory footprint. 
These features make it easy to deploy in low-cost devices that have memory constraints, such 
as raspberry Pis. ZMQ-based VOLTTRON performs well on small boards as in Section 0 for the 
performance benchmarking comparison conducted on a Raspberry Pi 4 model B. ZMQ-based 
VOLTTRON is perfect for single platform deployment or multi-platform deployments with fewer 
VOLTTRON instances (<20) connecting to a central instance or to each other. ZMQ-based 
VOLTTRON can hold ~100 agents per VOLTTRON instance without any degradation in the 
message bus performance. ZMQ-based VOLTTRON can handle a low to medium volume of 
traffic, as shown in the benchmark results in Sections 6.2 and 0. In ZMQ-based VOLTTRON, we 
have custom-built a ForwardHistorian agent to forward messages from one platform to another. 
ForwardHistorian also provides backup cache support, which is useful when connection to the 
remote platform is lost. ZMQ-based VOLTTRON has a custom-built multi-platform feature where 
the connections between multiple platforms are maintained by the internal router module, and 
the agents themselves do not have to manage the connection. They can publish/subscribe to 
messages and make Remote Procedure Calls (RPCs) to agents in other platforms seamlessly. 
However, this does not scale as well as an RMQ-based VOLTTRON instance because it needs 
O(n2) connections between n instances. The platforms cannot be daisy chained together and 
have messages be sent over multiple hops to a destination platform or have multiple groups of 
VOLTTRON instances connect to each other. For ZMQ-based VOLTTRON to provide this kind 
of flexible deployment options, these features need to be custom-built, which will involve lot of 
time and effort from the VOLTTRON team. 

Installation of RMQ-based VOLTTRON is more involved because it has more steps related to 
configuring the RMQ broker and setting up SSL certificates for the VOLTTRON platform and its 
agents. This added complexity is perhaps a higher barrier to enter for some non-software 
engineers and would make them hesitant to adopt RMQ-based VOLTTRON for their 
deployment use case. The VOLTTRON team continuously works on streamlining the installation 
and troubleshooting steps based on user feedback. RMQ is useful for large-scale deployments 
involving numerous VOLTTRON instances either connected to each other or to a central 
instance. It has several easy-to-use plugins that are integrated into RMQ-based VOLTTRON. It 
also provides more flexibility in deployment. The shovel plugin can be used to forward 
messages from one platform to another. But the drawback is that, it has limited caching 
capability so when the connection to the remote broker is lost for an extensive period, data will 
be lost. RMQ provides a standard in-built federation plugin to connect multiple platforms 
together. This plugin can be used to connect multiple VOLTTRON instances and have them 
work together as a group with loose coupling. The agents themselves do not have to manage 
the connection; they can publish/subscribe to messages and make RPCs to agents in other 
platforms seamlessly. The platforms can be daisy chained together or have multiple groups of 
VOLTTRON instances connect to each other using the federation plugin. Unlike the ZMQ-based 
VOLTTRON instance, the federation plugin does not need O(n2) connection between n 
instances, so it scales better. In terms of message bus performance, RMQ-based VOLTTRON 
performs better as the number of messages being published on the message bus increases to 
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very high extent and message payload size becomes very high. So, it is well suited for 
deployment use cases that need to withstand very large amounts of data traffic. RMQ provides 
a web interface to manage and monitor RMQ resources. This interface enables creation, 
deletion, and authorization management of users, queues, and more. It also allows the platform 
user to monitor performance metrics such as queue length, message rates, connection 
information, etc. This is a useful feature for understanding the status of a deployed instance and 
performing some quick troubleshooting. ZMQ-based VOLTTRON has custom-built features to 
control the status of the agents and add/delete/control access of some of VOLTTRON’s 
resources. However, it does not have built-in capability to monitor the status and gather 
message bus performance metrics.  

Integration with third-party tools, such as Message Queuing Telemetry Transport (MQTT) and 
Elasticsearch, is easier with RMQ-based VOLTTRON. Because RMQ is a well-known 
messaging library and widely accepted in industry, several easy-to-use plugins have been 
developed either within RMQ or in the external tools to establish connection with each other. A 
git repository (https://github.com/VOLTTRON/external-clients-for-rabbitmq) maintained by the 
VOLTTRON team shows examples of how to connect to some of them. In ZMQ-based 
VOLTTRON, custom agents must be created to connect to these disparate tools and send 
messages to each other. These agents also must be regularly updated to keep up with changes 
in newer versions of the external tool. Having the choice of various community-developed 
plugins instead of custom agents, makes it easier for VOLTTRON to cater to the emerging 
needs of the community. 

 ZeroMQ-based VOLTTRON 

This section provides brief description of features of ZMQ-based VOLTTRON. ZMQ-based 
VOLTTRON uses ZMQ (https://zeromq.org/get-started/) as the underlying message library. The 
VOLTTRON platform process acts as the server and is responsible for accepting incoming client 
connections and routing the messages between agents. The VOLTTRON agents are client 
applications and connect to the VOLTTRON platform to be part of the VOLTTRON ecosystem. 
The agents send messages to each other using the VOLTTRON Interconnect Protocol (VIP). 

 VOLTTRON Interconnect Protocol 

VIP is a routing protocol invented by PNNL that allows agents to send messages to each other 
in a known, common message format, while maintaining interoperability and security goals. VIP 
uses the ZMQ’s router pattern. Specifically, the router runs within the VOLTTRON platform and 
binds to a ROUTER socket and acts as the server, and peers/agents connect using a DEALER 
or ROUTER socket. The router is responsible for routing messages between peers/agents. 
Each agent must be associated with unique identity string so that the router knows where to 
route the message to. Each message follows the format below. 
 

RECEIVER SENDER PROTOCOL USER_ID MSG_ID SUBSYSTEM ARG1 ARG2 
 

ARGN 

• Sender: identity of the sending (source) peer. 

• Receiver: identity of the recipient (destination) peer. 

• Protocol: set to “VIP1”. 

https://github.com/VOLTTRON/external-clients-for-rabbitmq
https://zeromq.org/get-started/
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• User_ID: VIP authentication metadata set in the authenticator. 

• Msg_ID: message identifier set by the sending peer. Replies SHALL echo the request id 
without modifying it. 

• Subsystem: this specifies the peer subsystem for which the data are intended.  

• Arguments: provides the arguments for the given subsystem. The number of frames 
required is defined by each subsystem. 

When an agent, Agent1, wants to make an RPC “set_point” to Agent2, it packages the message 
in the format below and sends it over the message bus. The router looks at the first frame and 
forwards the message to the intended recipient. The recipient, Agent2, then performs the 
appropriate actions based on the subsystem frame, which is “RPC” in this example, and sends 
the response back by exchanging the first and second frames. The router again looks at the first 
frame and routes it to caller of RPC method which is Agent1. 
 

Agent2 Agent1 VIP1 abcd 001 RPC set_point Agent2 PointA 0.9 

 

Agent1 Agent2 VIP1 abcd 001 RPC set_point True 

More information about the VIP protocol can be found at 
https://volttron.readthedocs.io/en/develop/platform-features/message-bus/vip/vip-overview.html  

 Authentication 

VIP uses ZMQ’s ZeroMQ Authentication Protocol (ZAP) and Elliptical Cryptographic Curve 
(ECC) key mechanism to provide authentication. Only agents authenticated by the platform can 
connect and use the encrypted channel for communication. VIP authentication is implemented 
in the auth module and extends the ZAP to VIP by including the ZAP User-ID in the VIP 
payload, thereby allowing the platform to authorize access based on ZAP credentials. 
VOLTTRON automatically generates an encryption key and enables CurveMQ by default on all 
Transmission Control Protocol connections.  

ZAP defines a method for verifying credentials exchanged when a connection is initially 
established. The authentication mechanism provides three main pieces of information useful for 
authentication: 

• domain: a name assigned to a locally bound address (to which peers connect) 

• address: the remote address of the peer 

• credentials: includes the authentication method and any associated credentials. 

During authentication, VOLTTRON checks these pieces against a list of accepted peers defined 
in a file, referred to as the “auth file” in this document. This JSON-formatted file is located at 
$VOLTTRON_HOME/auth.json and contains an “allow” list defining the list of allowed 
credentials. Authentication goes through when credentials match. Domain and address details 
are supplemental information and are not mandatory for authentication. Each agent must create 
an ECC-based private-public key pair, and the agent’s public credentials must be added to the 
auth file before attempting to connect to the platform. 

https://volttron.readthedocs.io/en/develop/platform-features/message-bus/vip/vip-overview.html
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 Authorization 

VIP authorization gives the platform owner the ability to limit the capabilities of authenticated 
agents. For example, the platform owner can set “capabilities” to allow only certain agents such 
as the PlatformDriver agent to publish to the “devices” topic. If any other agent attempts to 
publish to “devices” topic, the platform will raise an “Unauthorized” error. Another example 
would be adding capability to an agent’s RPC method. For example, setting “CAN_SET_TEMP” 
capability to agent’s set_point() RPC method restricts its access to agents that have the 
“CAN_SET_TEMP” capability defined in their auth file entry. More details about VIP 
authorization can be found at https://volttron.readthedocs.io/en/develop/platform-
features/message-bus/vip/vip-authorization.html, 

 RabbitMQ-based VOLTTRON 

RMQ-based VOLTTRON uses the pika (https://pika.readthedocs.io/en/stable/) library for the 
RMQ message bus implementation. The RMQ broker runs outside the VOLTTRON platform 
and all the agents, including the platform, connect to the broker. RMQ exchange is responsible 
for routing messages between agents. RMQ-based VOLTTRON uses SSL-based authentication 
mechanism with x509 certificates. Each VOLTTRON instance needs to be set up to connect to 
an RMQ broker, create exchange, create users for agents, generate certificates for connecting 
to the broker, etc. After each agent connects to the broker, it creates a VIP queue and binds the 
queue to the exchange with a unique binding key <instance-name>.<identity> and uses the 
queue to send and receive messages from the exchange. The binding key is used for routing 
and because each binding key is unique, the exchange will know where to forward the message 
to. 

 VIP in RabbitMQ VOLTTRON 

To maintain backward compatibility with ZMQ-based VOLTTRON, one of the main goals of the 
refactoring efforts was to decouple the VOLTTRON-specific code from the message bus 
implementation without compromising the existing features of the platform. The next step was to 
encapsulate all messages sent from the application code into a message bus agnostic VIP 
message object. The message parameters continue to follow the VIP protocol frames such as 
sender, receiver, protocol, subsystem, etc., but they are mapped to pika properties before 
publishing the message. The message is published on the RMQ message bus using pika library 
APIs, as follows: 

# Fit VIP frames in the PIKA properties dict 
# VIP format - [SENDER, RECIPIENT, PROTO, USER_ID, MSG_ID, SUBSYS, 
ARGS...] 
message_property = { 
'user_id': userid, # USER_ID 
'app_id': <Routing key of SENDER> 
'headers': dict( 
 recipient= <Routing Key of destination>, # RECEIVER 
 proto='VIP', # PROTO 
 user=user, # USER_ID 
), 
'message_id': msg_id, # MSG_ID 
'type': <subsystem>, # SUBSYS 

https://volttron.readthedocs.io/en/develop/platform-features/message-bus/vip/vip-authorization.html
https://volttron.readthedocs.io/en/develop/platform-features/message-bus/vip/vip-authorization.html
https://pika.readthedocs.io/en/stable/
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'content_type': 'application/json' 
} 

The exchange looks at the destination routing key (binding key) and routes it to an appropriate 
destination agent. On the receiver end, the pika message properties are examined and 
appropriate action is taken. For example, if the subsystem property is “RPC”, it is processed by 
the corresponding subsystem component of the agent code and sent higher up to the 
application code. 

 Authentication 

RMQ-based VOLTTRON uses SSL-based authentication (Figure 1), rather than the default 
username and password authentication. VOLTTRON adds SSL-based configuration entries to 
the rabbitmq.conf file for RMQ broker to use during the setup process. 

 

Figure 1. SSL-based authentication. 

Every RMQ-based VOLTTRON instance has a single self-signed root Certificate Authority (CA) 
and server certificate signed by the root CA. This is created during VOLTTRON setup and the 
RMQ server is configured and started with these two certificates. Every time an agent is started, 
the platform automatically creates a pair of public-private keys for that agent and a certificate 
that is signed by the same root CA. When an agent communicates with the RMQ message bus 
it presents its public certificate and private key to the server and the server validates whether it 
is signed by a root CA it trusts; i.e., the root certificate it was started with. Because there is only 
a single root CA for one VOLTTRON instance, all the agents in this instance can communicate 
with the message bus over SSL. 

 Authorization 

This feature needs to be implemented in RMQ-based VOLTTRON. RMQ has several access 
controls and permission settings that can be applied on the RMQ queues, exchanges, and 
users to control access to them. This feature needs to be leveraged within RMQ-based 
VOLTTRON and applied to resources used by VOLTTRON. 
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 Differences between ZMQ-based VOLTTRON and RMQ-
based VOLTTRON 

ZMQ-based VOLTTRON RMQ-based VOLTTRON 

Platform acts as the broker and is 
responsible for routing messages 

Separate broker runs outside the platform and all 
agents connect to the broker. Exchanges are 
responsible for routing messages. 

Authentication is based on the ZAP protocol 
using the ECC keys. 

SSL-based authentication uses TLS x509 certificates. 

Remote agent authentication is achieved by 
adding the public key of the remote agent to 
auth.json 

Remote agent authentication uses Certificate-Signing 
Request operation. 

Custom agents such as ForwardHistorian 
agent for forwarding messages from one 
platform to another. 

Shovel plugin can forward messages from one platform 
to another. 

VOLTTRON specific implementation for 
multi-platform connection 

Federation plugin can be used for multi-platform 
connection. 

Custom agents to connect to third-party 
tools. Example: MQTT historian agent. 

Tool integration using RMQ plugins (example: 
https://www.rabbitmq.com/mqtt.html) or third-party 
plugins (example:  
https://www.elastic.co/guide/en/logstash/current/plugins-
integrations-rabbitmq.html) 

Need to build custom agent to monitor the 
status of the message bus 

Management plugin that provides web user interface to 
monitor status of message bus 

• Message rates 

• Resource usage of queues 

• Data rates of client connections 

Scalable multi-platform connections Highly scalable. It does not require O(n2) connections 
between n brokers. 

Table 1 Differences between ZMQ-based and RMQ-based VOLTTRON 

 Performance Benchmarking 

This section describes a comparison of ZMQ-based VOLTTRON and RMQ-based VOLTTRON 
performance in a small system. For the purposes of comparison, several measurements were 
conducted using VOLTTRON installed on a Raspberry Pi 4 model B. The Pi was running 
Raspbian 10 and all tests were local to the system (that is, no physical devices, external 
databases, or other services were used). The tests explored several different parameters as 
described in sections below. The test configuration used a single platform driver with varying 
numbers of instances of a fake device with 18 points. The driver was configured with zero offset 
between devices and a default scrape interval of 1 minute. A single custom listener 
agent is available in the scripts/scalability-testing/multilistener directory of the main VOLTTRON 
repository. This agent was used to measure the time interval between two  times, the timestamp 
in the message header for the first message in a scrape conducted by the platform driver, and 
the time at which the final message from the scrape was received by the listener. The time 
interval values reported here are this interval averaged over five sequential 

https://www.rabbitmq.com/mqtt.html
https://www.elastic.co/guide/en/logstash/current/plugins-integrations-rabbitmq.html
https://www.elastic.co/guide/en/logstash/current/plugins-integrations-rabbitmq.html
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scrapes. For configurations with multiple listener agents, the time interval is also averaged over 
the measurement made for each listener 

 Scaling the Number of Devices 

The first set of benchmarks was collected by running the default configuration described above 
with the device scrape interval increased to 2 minutes and an increasing number of identical 
devices installed. This is summarized in Error! Reference source not found., where the time 
interval is as described above, and the normalized column is that value divided by the number 
of devices. 

 

 ZMQ RMQ 

Number of Devices 
Time Interval 

(seconds) 
Normalized 
(seconds) 

Time Interval 
(seconds) 

Normalized 
(seconds) 

2000 6.8425 0.0034 7.1926 0.0036 

4000 15.7469 0.0039 15.3346 0.0038 

6000 27.3608 0.0046 23.1164 0.0039 

8000 38.9499 0.0049 30.1291 0.0038 

10000 52.9024 0.0053 39.2204 0.0039 

15000 92.7736 0.0062 59.5759 0.0040 

Table 2 Scaling number of devices 

From these results we see that for the lower numbers of devices, the time to complete a scrape 
scales with the number of devices on either message bus. On ZMQ, at a sufficiently large 
number of devices, the time to publish begins to increase more quickly with increasing numbers 
of devices. The measurements were not continued to larger numbers of devices because a 
publication time larger than the device scrape interval would not produce a well defined 
measurement with the code as implemented. 

The behavior using RMQ did not scale worse than linearly with the number of devices for the 
cases considered. This implies that as the number of devices and hence the corresponding 
publications increase to a very high value, RMQ fairs better than ZMQ. RMQ has built-in load 
balancing capabilities, which helps to balance the heavy traffic on the message bus and hence 
the performance of RMQ is better with a larger number of publications. RMQ also has several 
back pressure capabilities to regulate the high amount of traffic from producers as explained in 
https://www.rabbitmq.com/blog/2015/10/06/new-credit-flow-settings-on-rabbitmq-3-5-5/. 

 Python Version Comparison 

In addition to the measurements of the previous section, a comparison was made between 
performance when running using python 2 and python 3. Because there are subtleties when 
installing erlang dependencies on arm-based system, these tests were conducted using a 
Debian 10 (Buster) running on relatively small virtual machines on a MacBook Pro. Each virtual 
machine was allocated 1 CPU and 1024 MB of RAM. The full python versions used were 2.7.16 
and 3.7.3, and for the python 2 tests the releases/6.x branch of VOLTTRON was used because 
VOLTTRON versions 7 and above are incompatible with python 2. The measurements were 
otherwise done in the same way as in Section 6.1. 

https://www.rabbitmq.com/blog/2015/10/06/new-credit-flow-settings-on-rabbitmq-3-5-5/
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The results of these comparisons are summarized in Table 3. There it is clear that for any 
combination of number of devices and message bus considered, the performance of 
VOLTTRON version 7 running on python 3 is faster than using VOLTTRON version 6 with 
python 2. In addition to the performance improvements, at this time python 2 has reached end 
of life and is no longer being supported by the python community. Python 3 and with 
VOLTTRON 7 or newer is therefore recommended for all new systems. 

 

  ZMQ  RMQ  

 

Number of 
Devices 

Time 
Interval 

(seconds) 
Normalized 

(seconds) 

Time 
Interval 

(seconds) 
Normalized 

(seconds) 

Python 2 4000 22.6471 0.0057 11.9526 0.0030 

 8000 49.2673 0.0062 41.5333 0.0052 

Python 3 4000 11.4655 0.0029 4.4405 0.0019 

 8000 32.0258 0.0040 14.9644 0.0019 

Table 3 Python Version Comparison 

 Scaling the Number of Agents 

The third set of benchmarks fixed the number of devices at 25 and scaled the number of 
listening agents. Here the results are more similar between the two buses, with both showing a 
publication time that exceeds the scrape interval at around 40 listeners installed. The results are 
summarized in Error! Reference source not found.. 

Number of Listeners ZMQ (time interval) RMQ (time interval) 

1 0.1385 0.0967 

5 0.2649 0.2912 

10 0.3543 0.4311 

20 0.6048 0.6192  

40 0.9850 0.9401 

60 1.3602 1.3350 

100 2.1723 2.1973 

Table 4 Scaling number of agents 
  

 Large Number of Points per Device 

To compare the performance of both message buses that had a large payload size, a single 
measurement was made on each bus for the case of a single listener with 400 devices installed 
and 4998 points per device. In this case, the average publish interval over five runs on ZMQ 
was 579.8724 seconds (1.4497 seconds/device), while on RMQ it was found to be 38.9306 
seconds (0.0973 seconds/device). The RMQ bus completed these publications in less time than 
scrape interval, indicating that the configuration could be sustained, whereas with ZMQ the 
publication time results in an accumulation of backup and eventual failure or data loss. This 
implies that for a large message payload size, RMQ fairs much better than ZMQ. 
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 Qualitative Historian Backlog Test 

The final set of observations went back to looking at performance as a function of the number of 
devices. In this case, the custom listener agent was replaced by the SQLite historian and the 
driver was configured to perform scrapes continuously (as opposed to stopping after a five-
scrape measurement). The platform was monitored to see if the historian was able to keep up 
with the rate of messages being published, or if it started to build up a backlog. On both 
message buses, no backlogging was observed until the publication rate had exceeded the 
default limit of the historians. The default behavior publishes points received in batches and 
limits the amount of time spent inserting data into the database to also allow for receiving new 
data, and this limit was reached when the number of devices was increased from 1600 to 3200. 
The performance of the platforms was not observably different between the two message bus 
cases in this test. 

It is important to note that this test was done using default configurations only. It is certainly 
plausible that a particular use case could finetune or use alternate configurations that would 
allow significantly larger numbers of points to be consumed. Some examples would be 
modifying the batch size used by the historian, having multiple historian agents each subscribed 
to a subset of points, or using a historian for a different SQL flavor using different storage. 
These configurations should be made specific to the particular use case. 

 Deployment Use Cases 

A typical deployment scenario of VOLTTRON is installing a VOLTTRON instance in one or 
many buildings within a campus to collect building device data from individual buildings and 
send them to a central instance for monitoring, control, or data visualization purposes (Figure 2). 
The central instance can be running in central server or in the cloud. The PlatformDriver 
(formerly MasterDriver) agent is configured to collect data from different types of devices in the 
buildings that typically use BACnet or Modbus protocols such as heating, ventilation, and air-
conditioning (HVAC), heat pumps, water heaters, air-handling units, etc. The PlatformDriver 
agent is configured to perform regular scrapes of device data points such as zone temperature, 
power, etc., at a pre-configured polling frequency. The scrapes are then published on the 
message bus on the “devices” topic to be picked up by interested agents. A ForwardHistorian 
agent is responsible for forwarding data from a local instance to a remote instance. If a 
VOLTTRON instance in each individual building needs to send messages (for example, device 
messages) to the central instance, then a ForwardHistorian agent needs to be installed on that 
instance with connection set up to remote central instance. The forwarder will then forward 
messages from the local to the remote instance for monitoring, control, or data visualization 
purposes. The remote instance needs to authenticate any incoming connection either through 
the command line or web interface. The central instance has a data historian (for example, 
SQLite or mongo or timescale historian) for storing data collected from the devices, results from 
experiments, etc. 
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Figure 2. Typical VOLTTRON deployment. 

 Simple Installations 

ZMQ-based VOLTTRON installation steps are easy and self-contained. Non-software engineers 
can quickly bootstrap the environment with minimal steps and start running the platform. It 
provides easy-to-use and robust security feature using the ECC key mechanism that is known 
to provide high security with short, fast keys. If an agent on one instance, V1, wants to connect 
to another instance, the public key of the agent can be easily copied over to a remote instance 
to provide authentication to the connecting agent. In contrast, RMQ-based VOLTTRON 
installation has several more steps with respect to configuring the RMQ broker and setting up 
SSL certificates for the VOLTTRON instance and its agents. During the setup process, each 
VOLTTRON instance needs to be configured to create its own CA and generate certificates 
signed by same CA and configure the RMQ broker and agents to use the certificates properly. 
This process has been automated but involves more steps than ZMQ-based VOLTTRON’s 
single instance setup. Establishing connections between multiple connections is more complex 
when using SSL certificates. For example, if an agent on one instance, V1, wants to connect to 
another instance, V2, it must initiate a web-based certificate-signing request operation with the 
remote instance. The administrator/platform owner on the remote instance can accept/reject the 
incoming connection request. If accepted, the remote instance creates a signed certificate and 
returns it to the agent, which is then used to establish the remote connection. Similar to agent 
authentication, we are in the process of streamlining federation and shovel connections with 
SSL certificate authentication. 

ZMQ-based VOLTTRON is perfect for single platform deployment or multi-platform deployment 
use cases that have fewer VOLTTRON instances connecting to a central instance or to each 
other. ZMQ-based VOLTTRON can hold ~100 (based on Section 6.2) agents per VOLTTRON 
instance without any degradation in the message bus performance. ZMQ-based VOLTTRON 
can handle a low to medium volume of traffic, as shown in the benchmark results in Sections 
6.2 and 0. As the number of devices and payload size became very high, performance of ZMQ-
based VOLTTRON starts to degrade. This is because the router module within the VOLTTRON 
process that is responsible for routing all the messages becomes a performance bottleneck. 
Significant changes must be made to ZMQ-based VOLTTRON to add back pressure capabilities 
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and high availability measures for very large-scale deployment. Typically, message-based 
systems become overloaded when a publisher is sending messages at a rate faster than the 
consumer can accept and process. We can then apply back pressure mechanisms to regulate 
the traffic. Some of the measures are forcing the publisher to stop sending until messages are 
consumed, discarding messages if the message bus limit is reached, or creating pull-based 
systems where consumers pull the messages from publisher’s queue when it is ready. RMQ-
based VOLTTRON has these features and hence is recommended for large-scale deployment. 

 Installation with a Very Large Message Payload 

RMQ-based VOLTTRON is very well suited for deployment scenarios in which the agents are 
sending very high volumes of data over the message bus; for example, an agent configured to 
collect data from a few hundreds of devices, each having 500–1000 data points, and publish the 
data collected over the message bus at regular intervals. As shown in Section 0, in such a 
scenario RMQ-based VOLTTRON can handle the traffic much better than ZMQ-based 
VOLTTRON. 

 Deployment Options 

For a multi-platform connection, many of the features had to be custom-built in ZMQ-based 
VOLTTRON. For example, for forwarding messages from one platform to another, a custom 
ForwardHistorian agent with a caching feature had to be created in ZMQ-based VOLTTRON. 
The RMQ library provides shovel plugin that performs a similar operation. The shovel plugin 
allows users to reliably and continually move messages from a source in one broker to a 
destination in another broker. A shovel behaves like a well-written client application that 
connects to its source and destination broker, consumes messages from the source queue, and 
re-publishes messages to the destination if the messages match the routing key (or the topic). 
RMQ-based VOLTTRON has an integrated shovel plugin feature and by taking a few simple 
steps the shovel can be reconfigured to forward messages of desired topics from a local  
VOLTTRON instance to a remote VOLTTRON instance. One drawback of the shovel plugin 
compared to the ForwardHistorian agent is that it has limited caching capability and when 
connection to a remote instance is lost, the data may be lost after a pre-configured maximum 
cache size is reached. 

Another way to connect multiple platforms is to make and manage the connections at the 
platform level. This alleviates the need for individual agents to connect to the remote instance 
directly for sending/receiving messages to/from the other platform. In ZMQ-based VOLTTRON, 
this is accomplished through customizations in the router module, which is responsible for 
routing messages. With this type of connection, agents can send and receive messages to and 
from other platforms without explicitly managing the connection. All the connected platforms can 
work together as group. This type of connection provides loose coupling between platforms; i.e., 
not everything needs to be shared with other platforms, and there can still be local-only 
components and messages. This is a very useful feature. One of the drawbacks of this custom-
built feature is that it is not highly scalable because it needs O(n2) connections between n 
VOLTTRON instances. Another drawback is that multiple VOLTTRON instances cannot be 
daisy chained together.  

Loose coupling between multiple RMQ instances can be achieved using RMQ’s federation 
plugin. The federation plugin allows users to federate exchanges and queues. A federated 
exchange or queue can receive messages from one or more upstream (remote) exchanges and 



 

16 

queues on other brokers. A federated exchange can route messages published upstream to a 
local queue. A federated queue lets a local consumer receive messages from an upstream 
queue. This plugin does not require O(n2) connections for n brokers and hence scales better 
than its ZMQ-based counterpart. Another advantage of federation is its ability to daisy chain 
multiple brokers, which provides more flexibility in deployment. RMQ-based VOLTTRON 
integrates with the federation plugin and enables loose coupling between VOLTTRON instances 
with just a few simple configuration steps. This allows agents to publish/subscribe to messages 
and make RPC calls to each other without having to manage the connections themselves. It is 
also highly scalable, so users can connect numerous buildings spread over a large geographical 
area. Clusters of VOLTTRON instances also can be tightly coupled to each other using RMQ’s 
cluster plugin. This is not currently integrated with RMQ-based VOLTTRON but can be 
integrated if there is a community need. 

Consider an example energy management system shown in Figure 3.This system forecasts and 
optimizes zonal energy demand by Machine Learning (ML) of occupant behavior and 
environmental data from each zone to improve occupancy comfort and reduce energy cost. 
VOLTTRON is installed at the campus, building, and zonal levels. The VOLTTRON instances at 
the zonal level are configured to collect data from and control devices in their respective zones. 
Typical devices are HVAC, lighting, and smart plugs. The device information is sent upward to 
the building-level VOLTTRON and similarly building-level status is sent to the campus node to 
be aggregated at the campus level. The building status and occupancy behavior are also 
continuously sent to a ML application in the cloud. The ML application uses the occupancy 
behavior information and environment data to learn the behavioral pattern and make real-time 
predictions for reducing energy demand and increasing occupancy comfort. Based on those 
predictions, control commands are sent to building and zonal VOLTTRON instances for 
adjusting the setpoints of the respective devices. The connection between building-level 
VOLTTRON instances and ML applications in the cloud needs to be secure to prevent 
cybersecurity attacks on the campus infrastructure if the ML application is compromised. The 
ML application is built using either RMQ or MQTT or Kafka message libraries. 

If a ZMQ-based VOLTTRON installation is used for this system, the VOLTTRON instances at 
campus, building, and zone levels can be connected using custom-built multi-platform 
connection. A custom agent that allows integration with RMQ/MQTT/Kafka with proper security 
features must be created to forward messages from building instance to ML application and 
back. Additional authorization features need to be added to control access of resources in 
building level VOLTTRON instances and restrict traffic being sent from ML application to 
VOLTTRON.  

If an RMQ-based VOLTTRON installation is used, then federation plugins can be used to 
connect the campus, building and zonal instances. We can create two-way federation links 
between zone and building-level VOLTTRON instances to send device status and control 
actions. Similar two-way federation links can be created between building and campus-level 
instances to send building-level status and control actions. If the ML application is built using 
MQTT or Kafka, RMQ provides easy integration with these libraries in a secure manner using 
SSL certificates. If the ML application is built using RMQ, then a one-way federation link needs 
to be created to forward messages from the building to the ML app. A two-way connection is not 
recommended because it would expose campus infrastructure to components in the cloud. 
Instead, a shovel connection can be created to send control commands from the ML app to the 
building-level VOLTTRON instances. In this way, users can limit the number of topics that can 
be sent in this direction. Since it is a matter of configuring existing and tested features in RMQ-
based VOLTTRON, using RMQ-based VOLTTRON is recommended for this use case. 
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Figure 3. Flexible deployment. 

 Integration with Third-Party Tools 

 Message Queuing Telemetry Transport 

MQTT is an Organization for the Advancement of Structured Information Standards standard 
message protocol for Internet of Things applications. It is widely used in the automotive, 
manufacturing, telecommunications, oil, and gas industries. Recently, there has been wide-
spread use of MQTT in the buildings and power systems domain for data collection and 
visualization applications. Many VOLTTRON users need VOLTTRON and MQTT based 
applications be integrated together such that these heterogenous systems can work together. 
One such user request is to integrate the LORAWAN gateway with VOLTTRON to collect data 
from air quality sensors to monitor the air quality in buildings. In addition, the LORAWAN 
gateway can connect to many other edge devices such as vending machines, water meters, 
etc., each speaking different message protocols but primarily MQTT. For VOLTTRON to collect 
data and send control actions to these edge devices, it must have an integration mechanism 
with MQTT. RMQ-based VOLTTRON uses RMQ’s MQTT plugin 
(https://github.com/VOLTTRON/external-clients-for-rabbitmq/tree/master/mqtt-volttron-client) to 
establish two-way communication with MQTT devices. In contrast, if ZMQ-based VOLTTRON is 
used, custom-built MQTT historian agent can be used to send data from VOLTTRON to MQTT 
client. But the agent must be extended for data to flow from MQTT client to VOLTTRON. 

 RabbitMQ  

RMQ-based VOLTTRON can be easily integrated with any other RMQ-only client application. 
An example use case would be a cyber defense RMQ-based application that detects any 
malicious data in building sensor measurements. Here, VOLTTRON collects data from buildings 
network and sends them to an RMQ-based analysis module containing forward decision and 

https://github.com/VOLTTRON/external-clients-for-rabbitmq/tree/master/mqtt-volttron-client
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classifier components. If the analysis module declares the data malicious, they are not passed 
to the destination endpoint. Because the analysis module uses the RMQ messaging library, 
RMQ-based VOLTTRON can be set up to collect data from the building network. The RMQ-
based analysis module (INGRESS) can connect to the same broker as an external client and 
read data from VOLTTRON’s message bus (Figure 4). To provide the same integration in ZMQ-
based VOLTTRON, a custom agent needs to be created to forward data to the RMQ-based 
INGRESS application. 

 

Figure 4. INGRESS application. 

 Elasticsearch 

Elasticsearch is a tool used to reliably and securely search, analyze, and visualize data in real 
time. It is typically used for performing visual analytics on the ingested data. Elasticsearch can 
be used to ingest buildings data and perform data analysis to detect anomalies in data, such as 
the zone temperature being higher than expected, etc. RMQ-based VOLTTRON can be 
integrated with Elasticsearch using Apache Nifi (https://nifi.apache.org/docs.html), which is a 
data flow management tool. Apache Nifi can be configured to pull data from any RMQ data 
source (in our case it will be RMQ-based VOLTTRON) and forward the data to Elasticsearch. It 
essentially creates a data pipeline between the two endpoints. After the data are ingested by 

ElasticSearch, they can be stored in Kibana and users can use various features in Elasticsearch 
to create data visualization and anomaly detection applications. Integration of Elasticsearch with 
ZMQ-based VOLTTRON would involve creation and maintenance of a custom agent to forward 
data to Apache Nifi and Elasticsearch. 

 Conclusion 

In general, simpler VOLTTRON deployments are good fits for the ZMQ-based message bus: 
single/low number instance install, little peer-to-peer interaction, and interacting with devices 
with existing drivers. RMQ comes into the forefront for the more complex deployments: large 

https://nifi.apache.org/docs.html
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numbers of instances communicating peer-to-peer and interacting with MQTT and other third 
parties. 

This document will continue to be updated to remain current with platform development and as 
the community gains experience using the message buses in different deployments. We 
welcome users of the platform to engage with the authors to relate their experience and help 
make this guidance document as relevant to the community as possible.
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