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Summary 
This report reviews approaches for the deployment of the VOLTTRON™ building control 
platform. It focuses on the competing priorities of scalability, repeatability, and simplicity by 
describing why each is important and how different real-world deployments may strike a unique 
balance between them. When making a new deployment of VOLTTRON™, the users should 
evaluate the needs of their particular case against these priorities to identify the best-fit 
management strategy.
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1.0 Introduction 
In most cases, software deployment falls into one of two categories: (1) ad hoc deployments 
that involve a person installing, configuring, and running the application according to some 
manual or interactive procedure; or (2) managed deployments that leverage some form of 
scripting or automation to execute an equivalent sequence of tasks. An ad hoc pattern is often 
much faster to complete initially and can be much easier to work with in cases where the 
desired details are not known in advance. For environments with a small number of deployed 
instances, the ad hoc solution may be preferrable because the time saved on repetition is 
reduced and the overhead cost of implementing the solution within the management system is 
non-zero. On the other hand, as a deployment matures it often becomes increasingly important 
for it to be robust and reliable, with a clear path for recovery or recreation in the event of a 
hardware failure in the host system. It is also often the case that a demonstrated deployment 
pattern will need to be repeated as new systems are added, as an upgrade path after host 
system upgrades to hardware or operating system, etc. 

In this report, we discuss the common features of a managed deployment pattern for the 
VOLTTRON™ use-case. VOLTTRON™ is an open source software platform supporting agent-
based control of remotely operable devices, with a focus on the devices used for building 
monitoring and control. We review the features such a pattern needs to provide and the various 
requirements that would drive one to use such a pattern. We present a description of the Pacific 
Northwest National Laboratory (PNNL) campus deployment of VOLTTRON as a case study, 
explore some of the deployment challenges exposed by that experience, and discuss some of 
the upcoming features and plans related to providing better support for these patterns. 

2.0 Overview of Managed Deployments 
Managed software deployments require an explicit statement of the desired system state, often 
in the form of configuration files. Configuration management tools provide increased reliability 
and repeatability of the deployment process by combining that description of the desired system 
state, with scripted logic for measuring the existing system state and moving it to the desired 
state as needed. This is in contrast to interactive deployment processes, which require less 
advance preparation, but which depend on consistent user input. In most cases, adoption of 
such a process is driven either by the need for high levels of system reliability or by the need to 
repeat the deployment consistently (either simultaneously across many systems, or sequentially 
on a single system). 

When moving toward a managed deployment of an application like VOLTTRON, the following 
characteristics are key to a successful design: 
1. The desired state of the system should be clearly defined in a format that can be version-

controlled. In addition to providing a means of reviewing the history of changes and the 
ability to restore a previous state, version control allows the relevant state to be stored 
separately from the deployment and available in the event of hardware loss. 

2. The deployment process should by fully automated, taking the desired system state 
definition as input. This is critical for providing robustness and scalability because otherwise 
a system is limited by the rate and reliability of a person taking actions. It also decouples the 
expression of the desired state details from the implementation of how to achieve them, 
allowing each to evolve independently and to be reused. 
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3. The process should provide an idempotent implementation. That is to say, if a system is not 
in the desired state, the automated process should move it to the desired state, but a 
system that is already in the desired state should be allowed to run without interruption. 

Key challenges when assembling a managed deployment (or migrating an ad hoc deployment 
to a managed state) include the following: 
1. It is critical that the deployment system accurately discover the difference between the 

desired state and the existing state. In particular, it is important to deal with cases in which 
prior automation steps may have started but not been completed (for example, the presence 
of updated configuration files on a system does not necessarily mean that they have been 
loaded). 

2. There must be a way for an administrator to investigate and resolve problems with the 
system without breaking the management system’s knowledge of the desired system state. 
This is generally done either by making state changes exclusively via the management 
system, or by including tooling that allows the discovered state to be retrieved and updated 
as the new desired state. Of these two approaches, the former is more robust, but the latter 
can be a reasonable compromise. 

3. For systems like VOLTTRON, where applications deployed on different servers need to be 
securely connected to each other, the management system needs to properly establish 
those connections in a secure fashion. That is, systems should not be configured to accept 
anonymous authentication, but instead the credentials and/or certificates should be obtained 
from the source of truth and placed in the correct location for use by the application. The 
management system should also support a scheme for updating and/or rotating the 
credentials in accordance with best practices.  

3.0 A Deployment Case Study: the PNNL Campus 
Deployment 

The VOLTTRON development team at PNNL maintains a collection of deployed VOLTTRON 
platforms on the Lab’s campus in Richland, Washington. The system serves several functions 
including providing a more realistic testbed for new versions of the software, providing a 
research and development platform for building controls research, and collecting a long-duration 
timeseries data set for use by artificial intelligence/machine learning (AI/ML) research (Kim et al. 
2020; Huang et al. 2019; Katipamula et al. 2017a, 2017b; and Katipamula et al. 2016).   

The system topology, shown in Figure 1, consists of a physical server connected to a facility-
specific network for each building being monitored. Each building’s VOLTTRON platform 
includes a Platform Driver agent for data collection and a Forward Historian that sends data to a 
central platform; the buildings with support for VOLTTRON-based control include those agents 
in the same platform. The central collection platform runs on a managed virtual machine and 
runs historians, which connect to various databases for longer-term data storage. 
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Figure 1. Network topology for two VOLTTRON platforms, one on a restricted facility network 

zone with connectivity to building control systems and one in an accessible zone. A 
networking exception allows the platform in the restricted zone to connect to the 
platform in the standard zone. The platform in the standard network zone is able to 
then connect to a database for data storage. This platform also provides a network 
route for administrative users who need to reach the platform in the restricted zone. 

The campus deployment has been running since 2016 
(https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-26866.pdf) and has 
expanded and evolved over time based on the projects leveraging it. The initial deployment and 
configuration was all done manually, as were the addition of new buildings and the upgrade to 
new versions of the platform. With release of VOLTTRON™’s deployment recipes 
(https://volttron.readthedocs.io/en/main/deploying-volttron/recipe-deployment.html, 
https://github.com/volttron/volttron-ansible), all aspects of managing the system have been 
migrating into an ansible-based system. Ansible is an open source configuration management 
tool, designed to support distributed and scalable environments. An ansible playbook is a 
collection of composable units, called roles and modules, which each ensure an aspect of 
configuration. A playbook is run in combination with an inventory which defines a set of hosts to 
be configured along with any unique configuration values which determine the exact behavior of 
the roles and modules when run on each host. The following sections describe the workflows 
that have been fully or partially implemented. 

3.1 Use of Ansible for Host Administration 

For the campus deployment, the first aspect of managed deployment is in no way specific to 
VOLTTRON. The Linux hosts on which the VOLTTRON platforms are deployed need to be 
maintained with regular security patches and we expect certain system daemon configuration 
customizations. We have developed several ansible playbooks using the standard features of 
ansible itself for applying these configurations and for installing updates. This ensures that all 
hosts have the same configuration, and any needed changes are applied everywhere uniformly. 
It also automates the process of configuring any new hosts if a new building is added or if the 
control of a building is migrated onto a new machine. 
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Because the configuration details are specific to the PNNL campus and the features used are all 
provided as part of ansible, further details are not included here. 

3.2 Use of Ansible for Backup and to Extract Pre-existing 
Configurations 

To take an already existing deployment of VOLTTRON™ and migrate it into the management 
system, the platform and agent’s configuration data must be imported into the format expected 
by VOLTTRON™'s recipe system. For agent installation and configuration, this is relatively 
straightforward, because the agent configuration file required by recipe is precisely the same file 
that is used to install an agent under ad hoc deployment. The configuration store is more 
complex because the platform retains a single file per agent, but the recipe system expects a 
file for each entry in the store. A shell script was developed to parse an existing configuration 
store file into the expected format (https://github.com/VOLTTRON/volttron-
ansible/blob/v1.3/examples/process_configuration_store.sh). 

3.3 Use of VOLTTRON™’s Recipes for Platform Management 

For the campus deployment, we maintain a private git repository with a complete set of input 
configuration files for the VOLTTRON™ recipe system. It consists of an ansible inventory file 
with all the platforms listed, as well as a directory for each building’s configuration. The files 
follow the pattern described in the recipe tutorial 
(https://volttron.readthedocs.io/projects/volttron-ansible/en/main/#step-1-prepare-configuration-
files), but the pattern is expanded to include all of the agents deployed on each building, 
including the full configuration store for the platform driver. 

It is therefore possible to use any of the standard recipe playbooks described in VOLTTRON™ 
documentation (https://volttron.readthedocs.io/projects/volttron-ansible/en/main/#available-
recipes) for tasks such as installing a particular version of VOLTTRON™, starting or stopping 
the platform, or creating a backup archive of the VOLTTRON_HOME and VOLTTRON_ROOT 
directories. 

3.4 Use of VOLTTRON™’s Recipe Components for Custom Tasks 

In addition to the workflows provided in the public recipes, we have developed several custom 
playbooks. The playbooks leverage the variables expected to be part of the configuration used 
by the recipes, as well as the ansible modules that are included in the ansible-galaxy package 
provided as part of the recipe system, but they implement additional procedures or workflows. 
The playbooks are maintained in a private repository next to the recipes’ configuration files 
because their implementations make assumptions that are specific to the deployment or 
because they are not sufficiently idempotent to be suitable for general release. 

For example, we have a playbook that updates the configuration of a single agent, rather than 
all of the agents on a particular platform (https://github.com/VOLTTRON/volttron-
ansible/blob/v1.3/examples/update-one-agent.playbook.yml). This could be problematic 
because the recipe component that updates the agent configuration files will update files for all 
agents, but the playbook will only actually run the volttron_agent module to apply those changes 
to a single agent. Running this playbook is much faster than the full configuration recipe on 
systems on which many agents are installed, and doing so is very useful when testing 
configuration variations or a new agent. Because we are able to leverage the existing ansible 
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modules, this playbook only needs to implement the customized logic for only updating a single 
VOLTTRON™ agent, rather than needing to reproduce the logic for updating the remote agent. 

While not currently implemented, a similar playbook is planned for use with the installation of 
custom agents related to building controls research. Those playbooks would potentially require 
custom steps to clone agent source code, which is not part of the main VOLTTRON™ 
repository, but would then be able to leverage the existing recipe modules for actually installing 
those agents. Our current plan also involves having a separate inventory that manages only the 
agents that are specific to the experiment. Because the agent installation does not remove 
agents that already exist, this having a separate inventory will allow the experiment-related 
agents to be deployed and managed independently from the permanent agents.  

4.0 Known Challenges and Possible Future Patterns 
During the process of migrating the PNNL campus deployment of VOLTTRON™ from ad hoc 
deployments to a managed system, several specific areas of concern were identified. We 
discuss them here along with our current methods of mitigation. For each concern, we also 
discuss some changes in or enhancements to the VOLTTRON™ platform and/or the volttron-
ansible recipe system, which would enable better solutions in the future. Not all of these are 
currently on the VOLTTRON™ roadmap and input from the user community is desired as the 
core team determines what pattern or patterns to support. 

4.1 The Multi-platform Pattern 

Under the currently documented multi-platform pattern, the process for configuring setting up a 
pair of platforms and establishing connections between them requires running several 
commands on each system (that is, configuring and running the central platform; configuring the 
collector platform, starting it, and installing the forwarder; getting the authentication key for the 
forwarder and adding it to the auth system on the central system). Other multi-platform patterns 
would have a similar set of challenges because connections must be initialized on one platform 
and then approved on another. 

For the campus deployment, our current workaround for this problem is to leverage the fact that 
the recipe system updates the source code and configuration files, but tries to do so in a 
nondestructive manor with respect to the rest of the agent’s state directory. This means that 
systems that already have existing connections should retain those across playbook executions. 
The actual authentication subsystem updates are completed manually as needed. An 
intermediate solution would be to create a new playbook that replicates the sequence of manual 
steps for creating a connection. However, such a playbook would either need to assume that 
the two platforms are in an expected running state, or put them into that state, either of which is 
likely to be in tension with the principles of least surprise and doing no harm (either because a 
platform is unexpectedly started, or because the playbook is unable to achieve the desired 
state). 

As noted, the main challenge with this system is that establishing the connection requires 
actions on multiple systems and depends on all systems being in the expected state at that 
time. The following new workflow patterns may make it much easier to implement this process 
in a more robust way: 
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1. Use the vctl tool to make changes to the authentication file directly in circumstances when 
the platform is not running. Currently the auth subsystem expects that it is the only source of 
modifications to the files storing auth truth. In the case where the central platform is not 
running, a configuration must either start that platform to issue auth commands (which is 
problematic if there is some other reason why the platform needs to remain off), or directly 
edit the auth file (which is currently not a recommended/supported pattern. 

2. Allow an agent’s authentication keys to be externally provided to the installation process. 
Under this pattern, those keys would be an external secret and the recipe system could add 
the auth entries to the central system when it is installed/configured, even if the collection 
system is not yet configured. 

3. Consume authentication details from some external source of truth. Under this pattern, the 
central platform would retrieve auth data from an external source (which would either be 
responsible for auth validation, or from which it would maintain a synchronized truth data). 
Under such a pattern, the deployment of a collection board would include updating the 
authentication entries in the external source of truth, to be read by the central system during 
its next validation or synchronization cycle. This pattern would require a substantial 
reworking of the auth subsystem, which is not within the current project scope. The 
advantage of this pattern is that the external source of truth allows the VOLTTRON™ 
platforms (collector and central) to each be ignorant of the state of the other until runtime, 
when they actually depend on having an active connection. 

4.2 Secrets Management 

There are currently a number of VOLTTRON™ agents that consume sensitive information that 
is outside of the platforms auth subsystem; the most obvious example of this is database 
historians, which contain connection credentials in their configuration files. With an ad hoc 
deployment, the main concern with this pattern is the filesystem permission management and/or 
access restrictions on the host system. However, in a managed deployment the configuration 
files are generally stored in a version control system hosted on external servers. It is generally 
considered to be bad practice to store credentials in readable text within a code repository. This 
is both because it can be hard to fully manage access permissions in a web-hosted code 
registry, and because when many users may be cloning a repository onto their host systems, 
there is no way to ensure that all of those systems protect the secret sufficiently. 

For the campus deployment, we mitigate these concerns by only storing these repositories on 
institutionally managed systems with carefully restricted access permissions. There are a 
number of paths that would improve the security and reliability of this pattern: 

1. The solution requiring the largest refactoring, also provides the most opportunities for 
convenience features. If secrets were managed by an external secret manager (such as 
HashiCorp's Vault), then all database credentials could be protected and issued by the vault 
system and would not need to be included in the version-controlled configuration files. 
Under this pattern, access to the vault itself would need to be handled as part of the host 
administration process, and the VOLTTRON™ platform would connect to the vault using 
credentials that are found on the host system. 

2. There are a number of patterns, both within ansible and other tools, for enabling files to be 
encrypted and decrypted as part of a deployment process. If the consuming agents were 
able to consume sensitive configuration details from a file separate from the rest of their 
config (possibly a file specified in the main configuration file), then the sensitive data could 
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be encrypted before placing them under version control and only decrypted at the time of 
use. This pattern would also enable decoupling of the management of the credential data 
from the management of the agent. For example, a credential rotation process could update 
the credentials in the database or other remote system, and then update the corresponding 
credentials in the known file location on the hosts running VOLTTRON™. The platform 
could then be told to re-read the credentials (if already running), or would pick up the 
change when started (if not running), or may even be updated to try re-reading the 
credential file if a filesystem change is noticed and/or whenever making a new connection to 
the remote resource. 

4.3 The VOLTTRON™ Central Pattern 

The PNNL campus deployment uses a pattern where multiple data collection platforms all 
forward data to a central platform, which receives all of the data and processes them into 
longer-term storage (see the Appendix for more detailed discussion of our storage pattern). This 
design pattern is a convenient way to deal with collecting data from systems that are in 
restricted network zones, as is the case in our application. It also reduces the number of 
credentials that must be distributed, because the platforms doing the data collection do not need 
to be able to create their own database connections. 

This VOLTTRON™ central pattern is limited by the fact that all data from all collection systems 
must pass through the message bus of the central platform. The point at which this becomes a 
bottleneck will depend on the resources available to the central platform, as well as the number 
of collection platforms, the number of devices on each of those platforms, and the number of 
points in each device.  

4.4 Alternative Message Bus (RabbitMQ) 

Recent versions of the VOLTTRON™ platform add support for the use of RabbitMQ as the 
message bus. The configuration of the RabbitMQ application is integrated with the configuration 
utilities packaged with VOLTTRON™, so if the application is used the configuration is tightly 
integrated with the rest of the system. The use of RabbitMQ offers additional patterns for linking 
multiple platforms as described in the project documentation 
(https://volttron.readthedocs.io/en/main/deploying-volttron/multi-platform/multi-platform-
rabbitmq-deployment.html). 

5.0 Conclusion 
It is our hope that users in the VOLTTRON™ community will provide feedback that may include 
case studies of their own deployment patterns, major pain points experienced, or solutions 
being leveraged. If appropriate for public release, we would include those examples in future 
versions of this document and/or add the associated references. We also welcome feedback 
about the planning process for the design changes going forward. In addition to using direct 
channels of communication with which the reader may already be comfortable, please feel free 
to contact the VOLTTRON™ core team by email at volttron@pnnl.gov. 
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Appendix A – PNNL Campus Data Rotation 
The campus data collection system is designed to retain data at varying levels of availability 
based on data age. This approach is based on the competing interests of researchers, who 
would like access to as much historical data as possible, and the performance considerations 
that prevent any storage system from being able to simply grow without bound. We currently 
store data in the following locations: 
1. The forwarder historian on each collection system has a local SQLite cache. This is 

expected to be empty, but can collect data at times when network outages occur or if the 
central platform needs to be taken down for maintenance. 

2. The platform historian on the central platform receives data from the forward historian on 
each collection system and can place the data in a sqlite cache. Similar to the forwarder 
historian, this cache is expected to remain empty except during maintenance cycles. 

3. The primary storage is a timescale database that uses the SQL Historian. This system 
contains approximately 1 year of data. The host is on an institutionally managed virtual 
machine (VM), which is expected to have a high level of availability (and matches the 
availability of the VM for the central platform). 

4. The secondary storage is also a timescale database, but it retains the prior year’s worth of 
data. It is hosted on a VM with a potentially lower availability, but still provides a standard 
database interface for access. 

5. The central platform also runs an archiver historian, which stores data locally in sqlite files. 
These files are aggregated and shipped to a tape archive for long-term retention. Access to 
this data source is much slower because it is a file-based system and also in a tape archive, 
but it does not suffer performance impacts as the data size grows (up to filesystem limits), 
because there is no database application that needs to traverse the data set.
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